InterviewSolution
| 1. |
निवनिर्वासित या शब्दाचा समूहदर्शक शब्द कोणता |
|
Answer» \star\underline{\mathtt\orange{⫷❥Q᭄} \mathfrak\blue{u~ }\mathfrak\blue{Σ} \mathbb\purple{ §}\mathtt\orange{T} \mathbb?\pink{iOn⫸}}\star\:⋆ ⫷❥Q᭄u Σ§TiOn⫸
⋆ A particle accelerates from rest at a constant rate for some time and attains a velocity of 8m/s. Afterwards it deaccelerates with the constant rate and comes to rest .If the total time taken is 4sec, what is the distance travelled? { { \underbrace{ \mathbb{ \red{GIVEN\ }}}}} GiVeN
Initial \:velocity(u) =0m/sInitialvelocity(u)=0m/s Final\:velocity (v) =8m/sFinalvelocity(v)=8m/s Time\: taken (t) =4sTimetaken(t)=4s { { \underbrace{ \mathbb{ \red{To\:PrOvE\ }}}}} ToPrOvE
Distance \:travelled \:of \:a \:particleDistancetravelledofaparticle \star\underbrace{\mathtt\red{⫷❥ᴀ᭄} \mathtt\green{n~ }\mathtt\blue{ §} \mathtt\purple{₩}\mathtt\orange{Σ} \mathtt\pink{R⫸}}\star\:⋆ ⫷❥ᴀ᭄n §₩ΣR⫸
⋆ {\boxed {\boxed {v=u+at}}} v=u+at
v²=u²+2asv²=u²+2as s=ut+\frac{1}{2} at²s=ut+ 2 1
at² v=Final\:velocityv=Finalvelocity u=Initial\:velocityu=Initialvelocity a=accelerationa=acceleration t=Time\:takent=Timetaken now\:substitute\:the \:valuesnowsubstitutethevalues 8=0+a(4)8=0+a(4) 8=a\times 48=a×4 a= \frac{8}{4}a= 4 8
{\boxed {\boxed {a=2m/s²}}} a=2m/s²
________________________________ v=u+atv=u+at {\boxed {\boxed {v²=u²+2as}}} v²=u²+2as
s=ut+\frac{1}{2} at²s=ut+ 2 1
at² now\:substitute\:the\:valuesnowsubstitutethevalues 8²=0²+2(2)(s)8²=0²+2(2)(s) 64=0+4\times s64=0+4×s 64=4\times s64=4×s s=\frac{64}{4}s= 4 64
{\boxed {\boxed {s=m}}} s=m
\therefore the\:distance \:travelled \:by\:the \:PARTICLES \:is\:{\boxed {\boxed {16m}}}∴thedistancetravelledbytheparticlesis 16m
\blue{\boxed{\blue{ \BOLD{\fcolorbox{red}{black}{\green{☺︎︎Hope\:It\:Helps☺︎︎}}}}}} ☺︎︎HopeItHelps☺︎︎
{\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5069}}}}}}}}}}}}}}} @suraj5069
\star\underline{\mathtt\orange{⫷❥Q᭄} \mathfrak\blue{u~ }\mathfrak\blue{Σ} \mathbb\purple{ §}\mathtt\orange{T} \mathbb?\pink{iOn⫸}}\star\:⋆ ⫷❥Q᭄u Σ§T?iOn⫸
⋆ A particle accelerates from rest at a constant rate for some time and attains a velocity of 8m/s. Afterwards it deaccelerates with the constant rate and comes to rest .If the total time taken is 4sec, what is the distance travelled? { { \underbrace{ \mathbb{ \red{GiVeN\ }}}}} GiVeN
Initial \:velocity(u) =0m/sInitialvelocity(u)=0m/s Final\:velocity (v) =8m/sFinalvelocity(v)=8m/s Time\: taken (t) =4sTimetaken(t)=4s { { \underbrace{ \mathbb{ \red{To\:PrOvE\ }}}}} ToPrOvE
Distance \:travelled \:of \:a \:particleDistancetravelledofaparticle \star\underbrace{\mathtt\red{⫷❥ᴀ᭄} \mathtt\green{n~ }\mathtt\blue{ §} \mathtt\purple{₩}\mathtt\orange{Σ} \mathtt\pink{R⫸}}\star\:⋆ ⫷❥ᴀ᭄n §₩ΣR⫸
⋆ {\boxed {\boxed {v=u+at}}} v=u+at
v²=u²+2asv²=u²+2as s=ut+\frac{1}{2} at²s=ut+ 2 1
at² v=Final\:velocityv=Finalvelocity u=Initial\:velocityu=Initialvelocity a=accelerationa=acceleration t=Time\:takent=Timetaken now\:substitute\:the \:valuesnowsubstitutethevalues 8=0+a(4)8=0+a(4) 8=a\times 48=a×4 a= \frac{8}{4}a= 4 8
{\boxed {\boxed {a=2m/s²}}} a=2m/s²
________________________________ v=u+atv=u+at {\boxed {\boxed {v²=u²+2as}}} v²=u²+2as
s=ut+\frac{1}{2} at²s=ut+ 2 1
at² now\:substitute\:the\:valuesnowsubstitutethevalues 8²=0²+2(2)(s)8²=0²+2(2)(s) 64=0+4\times s64=0+4×s 64=4\times s64=4×s s=\frac{64}{4}s= 4 64
{\boxed {\boxed {s=m}}} s=m
\therefore the\:distance \:travelled \:by\:the \:particles \:is\:{\boxed {\boxed {16m}}}∴thedistancetravelledbytheparticlesis 16m
\blue{\boxed{\blue{ \bold{\fcolorbox{red}{black}{\green{☺︎︎Hope\:It\:Helps☺︎︎}}}}}} ☺︎︎HopeItHelps☺︎︎
{\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5069}}}}}}}}}}}}}}} @suraj5069
|
|