1.

Number of divisors of the form 4n + 2(n ≥ 0) of the integer 240 is (1) 4 (2) 8 (3) 10 (4) 3

Answer»

Correct Option (4) 3

Explanation:

(1) 240 = 2 4 × 3 × 5 

Factors of 240 are the terms of (1 + 2 + 22 + 23 + 24 ) (1 + 3) (1 + 5) 4n + 2 = 2 (2n + 1) = 2 × odd number. 

Such factors are 2 × 1, 2 × 3, 2 × 5, 2 × 15 These are four in number



Discussion

No Comment Found

Related InterviewSolutions