

InterviewSolution
Saved Bookmarks
1. |
Number of divisors of the form 4n + 2(n ≥ 0) of the integer 240 is (1) 4 (2) 8 (3) 10 (4) 3 |
Answer» <p></p><p style="text-align:justify"><span style="color:#000000"><span style="font-family:Arial,Helvetica,sans-serif"><strong>Correct Option (4) 3</strong></span></span></p><p style="text-align:justify"><span style="color:#000000"><span style="font-family:Arial,Helvetica,sans-serif"><strong>Explanation:</strong></span></span></p><p style="text-align:justify"><span style="color:#000000"><span style="font-family:Arial,Helvetica,sans-serif">(1) 240 = 2 4 × 3 × 5 </span></span></p><p style="text-align:justify"><span style="color:#000000"><span style="font-family:Arial,Helvetica,sans-serif">Factors of 240 are the terms of (1 + 2 + 2<sup>2</sup> + 2<sup>3</sup> + 2<sup>4</sup> ) (1 + 3) (1 + 5) 4n + 2 = 2 (2n + 1) = 2 × odd number. </span></span></p><p style="text-align:justify"><span style="color:#000000"><span style="font-family:Arial,Helvetica,sans-serif">Such factors are 2 × 1, 2 × 3, 2 × 5, 2 × 15 These are four in number</span></span></p> | |