InterviewSolution
Saved Bookmarks
| 1. |
Number of principal solution(s) of the equation sqrt(sin x) -1/(sqrt(sin x))= cos x, is : |
|
Answer» 1 `sin x + 1/(sin x) -2 = cos^(2)x = (1-sin^(2)x)` Let `sin x = t` `t + 1/t -2 = 1 - t^(2)` `t^(2) - 2t + 1 = t(1-t)(1+t)` `implies (1-t)[(1-t)-t(1+t)] = 0` `implies (1-t)[1-2t-t^(2)] = 0` `t = 1,t^(2) + 2t -1 = 0` `sin x = 1, sin x = (-2+-sqrt(4+4))/(2)` `sin x = 1, implies x = (pi)/2` also `sin x = sqrt(2)-1 and cos x lt 0` `implies` ONE solution in `(0,2 pi)`. |
|