InterviewSolution
Saved Bookmarks
| 1. |
Number of roots of the equation`2^(tan(x-pi/4))-2(0. 25)^sin^(3((x-pi/4))/(cos2x))+1=0,i s_______` |
|
Answer» `(sin^(2) (x-pi/4))/(cos 2x)=(1/2 (sin x-cos x)^(2))/(cos^(2) x-sin^(2) x)` `=(-1/2 (sin x - cos x))/(cos x + sin x)=-1/2 tan (x-pi/4)` Given equation reduces to `2^(tan(x-pi/4)-2(0.25)^(-1/2 tan(x-pi/4))+1=0` `rArr 2^(tan(x-pi/4)=1` `rArr x=pi//4`, which is not possible as `cos 2x=0` for this value for `x`, which is not defining the original equation. |
|