InterviewSolution
Saved Bookmarks
| 1. |
`"o f"int(dx)/(x^2(x^4+1)^(3/4))`A. `((x^(4)+1)/(x^(4)))^((1)/(4))+c`B. `(x^(4)+1)^((1)/(4))+c`C. `-(x^(4)+1)^((1)/(4))+c`D. `-((x^(4)+1)/(x^(4)))^((1)/(4))+c` |
|
Answer» Correct Answer - D `int(dx)/(x^(2)(x^(4)+1)^(3//4))=int(dx)/(x^(5)(1+(1)/(x^(4)))^(3//4))` Put `1+(1)/(x^(4))=t^(4)` `rArr" "(-4)/(x^(5))dx = 4t^(3)dt` `rArr" "(dx)/(x^(5))=-t^(3)dt` Hence, the integral becomes `int(-t^(3)dt)/(t^(3))=-int dt =-t+c=-(1+(1)/(x^(4)))^(1//4)+c` |
|