

InterviewSolution
Saved Bookmarks
1. |
O is any point inside a rectangle ABCD. Prove that `O B^2+O D^2=O A^2+O C^2`. |
Answer» If we draw a line `EF` parallel to `AB` in the given figure, it will divide rectangle `ABCD` into two rectangles `ABFE` and `CDEF`. Then, `AE = BF` and `CF = DE->(1)` Now, in `Delta OEA`, `OA^2 = OE^2+AE^2->(2)` In `Delta OCF`, `OC^2 = OF^2+CF^2->(3)` In `Delta OBF`, `OB^2 = OF^2+BF^2->(4)` In `Delta OED`, `OD^2 = OE^2+DE^2->(5)` Now, adding (2) and (3), `OA^2+OC^2 = OE^2+AE^2+OF^2+CF^2` From(1), `AE = BF` and `CF = DE` So, `OA^2+OC^2 = (OE^2+DE^2)+(OF^2+BF^2)` `OA^2+OC^2 = OB^2+OD^2` |
|