InterviewSolution
Saved Bookmarks
| 1. |
O is the centre of a circle of radius 5cm. T is a point such that OT=13cm and OT intersects the circle at E, find the length AB. |
|
Answer» Since, `angleOPT=90^(@)` (radius through point of contact is `_|_` to the tangent) `:.` In right `triangleOPT,` `OP^(2)+PT^(2)=OT^(2)" "`(by Pythagoras theorem) `implies" "PT^(2)=OT^(2)-OP^(2)` `implies" "PT^(2)=(13)^(2)-(5)^(2)=(12)^(2)` `implies" "PT=12cm` Let`AP=xcm` `:." "AE=AP=x" "`(lengths of tangents from an external point are equal) `:." "AT=TP-AP=12-x` `ET=OT-OE=13-5=8cm` Now, since `angleAEO=90^(@)" "`(radius through point of contact is `_|_` to the tangent) `:." "angleAET=90^(@)" "`(L.P.A) `:.` In right `triangleAET,` by Pythagoras theorem, `AE^(2)+ET^(2)=AT^(2)` Circles `implies" "x^(2)+(8)^(2)=(12-x)^(2)` `implies" "x^(2)+64=144+x^(2)-24x` `implies" "24x=144-64=80` `implies" "x=(80)/(24)=(10)/(3)` Similarly,`" "BE=(10)/(3)cm` `:." "AB=AE+BE=((10)/(3)+(10)/(3))cm=(20)/(3)cm` Hence,`" "AB=(20)/(3)cm` |
|