1.

Obtain an expression for the equivalent emf and internal resistance of two cells connected in parallel.

Answer»

Solution :
LET `I_1,I_2` represent branch currents.
Let V be the commonpotential ,so that ,
`I_1=(E_A-V)/r_1, I_2=(E_2-V)/r_2`
hence, `I=(E_1-V)/r_1 + (E_2-V)/r_2`
i.e., `I=(E_1/r_1 + E_2/r_2)-V (1/r_1+1/r_2)`
Comparingthis with the terminalpotentialdifference,
`V_E_(eq)-Ir_(eq)`
i.e.,`V=E_(eq)-1/((1/r_(eq)))`
For two CELLS in parallel COMBINATION ,
`(E_(eq))_p=(E_1/r_1 +E_2/r_2)/(1/r_1+1/r_2)=(E_1r_2 + E_2r_1)/(r_1+r_2)`
`1/(r_(eq))_p =1/r_1+1/r_2`and main current=`i=E_(eq)/(R+r_(eq))`
Note : (i) For .n. cells in parallel
`V=[(sum_(r=1)^n E_i/r_i)/(sum_(i=1)^n 1/r_1)]-[I/(sum_(i=1)^n 1/r_1)]` ,
`(E_(eq))_"parallel" =[(sum_(r=1)^n E_i/r_i)/(sum_(i=1)^n 1/r_1)]-[I/(sum_(i=1)^n 1/r_1)]` and `(1/r_(eq))_(p)=sum_(i-1)^n (1/r_i)`.
(ii) For .n. number of identicalcells
E-emf of each CELL
r-internalresistance of each cell.
`(E_(eq))_p =(n(E/r))/(n(1/r))`
i.e.,`(E_(eq))_p=E`
and `(1/r_(eq))_p=n(1/r)`
i.e. `(r_(eq))_p =r/n`
Main current, `I=(nE)/(R+n/r)` and terminalpotential difference across cells V=IR.


Discussion

No Comment Found

Related InterviewSolutions