InterviewSolution
Saved Bookmarks
| 1. |
Obtain the amount of `.^60Co` necessary to provide a radioactive source of `8.0 Ci` strength. The half-life of `.^60Co` is `5.3` years? |
|
Answer» The strength of the radioactive source is given as: `(dN)/(dt)=8.0mCi` `8xx10^(-3)xx3.7xx10^(10)` `=29.6xx10^(7)decay//s` Where, N = Required number of atoms Half-life of `_(27)^(60)Co,T_(1/2)=5.3" "years` `=5.3xx365xx24xx60xx60` `=1.67xx10^(8)s` For decay constant `lambda`, we have the rate of decay as: `(dN)/(dh)=lambdaN` Where,`lambda=0.693/T_(1/2)=(0.693)/(1.67xx10)s^(-1)` `therefore N=1/lambda (dn)/(dt)` `=(29.6xx10^(7))/((0.693)/(1.67xx10^(8)))=7.133xx10^(16) " atoms"` `"For " _(27)Co^(60):` `"For " _(27)Co^(60):` Mass of `6.023xx10^(23)` (Avogadro’s number) atoms `= 60 g` `therefore "Mass of "7.133xx10^(16) " atoms "=(60xx7.133xx10^(16))/(6.023xx10^(23))=7.106xx10^(-6)g` Hence, the amount of `_(27)Co^(60)` necessary for the purpose is `7.106xx10−6 g`. |
|