InterviewSolution
Saved Bookmarks
| 1. |
Obtain the binding energy of the nuclei `._26Fe^(56)` and `._83Bi^(209)` in units of MeV from the following data: `m(._26Fe^(56))=55.934939a.m.u.` , `m=(._83Bi^(209))=208.980388 a m u`. Which nucleus has greater binding energy per nucleon? Take `1a.m.u =931.5MeV` |
|
Answer» Atomic mass of `""_(26)^(56)Fe, m_(1)=55.934939" "u` `""_(26)^(56)Fe` nucleus has 26 protons and (56 − 26) = 30 neutrons Hence, the mass defect of the nucleus, `trianglem=26xxm_(H)+30xxm_(n)-m_(1)` where, Mass of a proton, `m_(H)=1.007825" "u` Mass of a neutron, `m_(n)=1.008665" "u` `therefore triangle m=26xx1.007825+30xx1.008665-55.934939` `=26.20345+30.25995-55.934939` `=0.528461" "u` `But" "1u=931.5 MeV//C^(2)` The binding energy of this nucleus is given as: `E_(b1)=triangle mc^(2)` Where, c = Speed of light `therefore E_(b1)=0.528461xx931.5((MeV)/(c^(2)))xxc^(2)` `=492.26 MeV` Average binding energy per nucleon `=492.26/56=8.79 Mev` Atomic mass of `_(83)^(209)Bi,m_(2)=208.980388" "u` `_(83)^(209)Bi` nucleus has 83 protons and `(209 − 83)` 126 neutrons. Hence, the mass defect of this nucleus is given as: `triangle m=83xxm_(H)+126xxm_(n)-m_(2)` Where, Mass of a proton, `m_(H)=1.007825" "u` Mass of a neutron, `m_(n)=1.008665" "u` `trianglem=83xx1.007825+126xx1.008665-208.980388` `=83.649475+127.091790-208.980388` `=1.760877" "u` `But 1u=931.5MeV//c^(2)` `therefore triangle m=1.760877xx931.5 MeV//c^(2)` Hence, the binding energy of this nucleus is given as: `E_(b2)=triangle mc^(2)` `=1.760877xx931.5((MeV)/(c^(2)))xxc^(2)` `=1640.26Mev` Average bindingenergy per nucleon `=(1640.26)/(209)=7.848Mev` |
|