InterviewSolution
Saved Bookmarks
| 1. |
`omega` is an imaginary root of unity. Prove that (i) `( a + bomega + comega^(2))^(3) + (a+bomega^(2) + comega)^(3) = (2a-b-c)(2b -a -c)(2c -a-b)` (ii) If `a+b+c = 0` then prove that `(a + bomega + comega^(2))^(3)+(a+bomega^(2) + comega)^(3) = 27abc`. |
|
Answer» (i) Let `a + bomega + comega^(2) = x` and `a + bomega^(2) + comega = y` , Then `(a+bomega + comega^(2))^(3) + (a+ bomega^(2) + comega)^(3) = x^(3) + y^(3)` `=(x+y)(x+ omegay)(x+ omega^(2)y)` Now, `x + y = (a+ bomeag + comega^(2) )+ (a+ bomega^(2) + comega)` `=2a + b(omega+omega^(2))` `=2-b-c` `x + omegay= (a+ bomega+ comega^(2)) + omega(a+bomega^(2) + comega)` `= (1+omega) a+ 1(1+ omega)b + 2omega^(2)c` `omega^(2) (2c-a-b)` Similarly, `x + omega^(2)y = omega(2b-a-c)` `rArr (x+y)(x+ omegay)(x+ omega^(2)y)` `=omega^(3)(2a-b-c)(2c-a-b)(2b -a-c)` `=(2a-b-c)(2c-a-b)(2b-a-c)` (ii) `a+ b+c=0` . `rArr b+c = -a,c+a= -b` and `a+ b= -c` Putting these values of the R.H.S of result (i), we get `(a+ bomega + comega^(2))^(3) + (a+bomega^(2)+ comega)^(3) = 27abc` |
|