InterviewSolution
Saved Bookmarks
| 1. |
On the xy plane where O is the origin, given points, A(1,0), B(0,1) and C(1,1). Let P,Q, and R be moving points on the line OA, OB, OC respectively such that vec(OP)=45t(vec(OA)), vec(OQ)=60t(vec(OB)), vec(OR)=(1-t)(vec(OC)) with t gt 0. If the three points P,Q and R are collinear then the value of t is equal to |
|
Answer» `1/106` `rArr vec(PQ) = lambdavec(QR)` `rArr 15R(4vecj-3veci)=LAMBDA[(1-t)(HATI+hatj)-60thatj]` `=lambda[(1-t)hati+(1-6lthatj)]` `rArr (45t)/(t-1) = (4t)/(1-61t)` `rArr 3(1-61t)=4(t-1)` `rArr 3-183t=4t-4` `rArr 187t=7` `rArr t=7/187` |
|