1.

On using row operation R_(1)rArrR_(1)-3R_(2) in the following matrix equation [{:(4,2),(3,3):}]=[{:(1,2),(0,3):}][{:(2,0),(1,1):}] we have

Answer»

`[{:(-5,-7),(3,3):}]=[{:(1,-7),(0,3):}][{:(2,0),(1,1):}]`
`[{:(-5,-7),(3,3):}]=[{:(1,2),(0,3):}][{:(-1,-3),(1,1):}]`
`[{:(-1,-7),(3,3):}]=[{:(1,2),(1,-7):}][{:(2,0),(1,1):}]`
`[{:(4,2),(-5,-7):}]=[{:(1,2),(-3,-3):}]=[{:(1,2),(-3,-3):}][{:(2,0),(1,1):}]`

Solution :We have, `[{:(4,2),(3,3):}]=[{:(1,2),(0,3):}][{:(2,0),(1,1):}]`
USING elementary row operation `R_(1)rArr-3R_(2)`.
`[{:(-5,-7),(3,3):}]=[{:(1,-7),(0,3):}][{:(2,0),(1,1):}]`
Since on using elementary row operation on `x=AB, we apply these operation SIMULTANEOUSLY on x and on the first matrix A of the PRODUCT AB on RHS.


Discussion

No Comment Found

Related InterviewSolutions