1.

One of the faces of a copper cube of side 7.7 cm is maintained at 100°C and the opposite face at 30°C. If the thermal conductivity of copper is 385 "Wm"^(-1) "K"^(-1). Calculate the rate of heat flow through the cube?

Answer»

Solution :`X= 7.7 xx 10^(-2) m`
`A = x^(2) = 59.92 xx 10^(-4)m^(2)`
`K= 385 " Wm"^(-1) "K"^(-1)`
`theta_1 - theta_2 = 100-30 = 70^(@) C = 70 "K"`
`t= 1 s`
Quantity of heat FLOWING is one second `= "KA" ( theta_1 - theta_2) t//x`
`=( 385 xx 59.29 xx 10^(-4) xx 70 xx 1)/( 7.7 xx 10^(-2) ) = 2075.15` J/S


Discussion

No Comment Found