InterviewSolution
Saved Bookmarks
| 1. |
Orthogonal trajectories of the system of curves `((dy)/(dx))^(2) = (a)/(x)` areA. `9a(y+c)^(2) = 4x^(3)`B. `y + c = (-2)/(9sqrt(a))x^(3//2)`C. `y^(2)+c = (2)/(3sqrt(a)) x^(3//2)`D. `9a (y+c)^(2) = 4x^(2)` |
|
Answer» Correct Answer - A Correct option is (A) 9a (y + c)2 = 4x3 Given differential equation of curves \((\frac{dy}{dx})^2=\frac ax\) ⇒ \(\frac{dy}{dx}=\frac{\sqrt a}{\sqrt x}\) Replacing \(\frac{dy}{dx}\) with \(\frac{-dy}{dx}\), we get \(\frac{dy}{dx}=\frac{\sqrt a}{\sqrt x}\) ⇒ \(-\frac{\sqrt a}{\sqrt x}dx=dy\) ⇒ \(\frac{-1}{\sqrt a}\int\sqrt xdx=\int dy+c\) ⇒ \(\frac{-1}{\sqrt a}\times\frac23 x^{3/2}=y+c\) ⇒ \(\frac{4}{9a}x^3=(y+c)^2\) (By squaring on both sides) ⇒ 9a (y + c)2 = 4x3 |
|