

InterviewSolution
Saved Bookmarks
1. |
`P_4` undergoes disproportionation in basic medium to give `PH_3` (phosphine) and `H_2PO^(ɵ)` (dihydrogen hypophoshite ion). Atomic weight of P is 31. |
Answer» `P_4to4H_2PO_2^(ɵ)+4e^(-)(n=4)` (oxidation) `12e^(-)+P_4to4PH_3(n=12)` (reduction) `Ew(P_4)=(Mw(P_4))/(4)+(Mw(P_4))/(12)` `=(31xx4)/(4)+(31xx4)/(12)` `=31+(31)/(3)=31+10.33=41.33g` Alternatively, `Ew(P_4)=Mw(P_4)((1)/(4)+(1)/(12))=Mw(P_4)xx(1)/(3)` `:.` n-factor of `P_4=3` second method : `P_(4)to4H_(2)PO_(2)^(ɵ)+cancel(4e^(-))]xx3` `underline(12^(-)+P_(4)to4PH_(3))` `underline(4P_(4)to4H_(2)PO_(2)^(ɵ)+4PH_(3))` Total change in number of electrons `=12` Effective molecular weight of `P_(4)=Mw(P_(4))+3Mw(P_(4))` `=Mw(P_(4))` `Ew(P_(4))=(4Mw(P_(4)))/(12)=(4xx4xx31)/(12)=41.33`g `therfore` n-factor of `P_(4)=(12)/(4)=3` |
|