1.

Perpendiculars are drawn from two points on axis of parabola `y^2=4ax` to a tangent to the parabola. The two point are situated at a distance of d from focus. if the perpendicular distances from the points are `p_1` ND `P_2` THEN FIND THE VALUE OF `P_1^2`-`P_2^2`

Answer» `y^2=4ax`
`y(2at)=2a(x+at^2)`
`ty=x+at^2`
`x-ty+at^2=0-(1)`
`P_1=(|(a+d)-0+at^3|)/sqrt(1+t^2)`
`P_2=(|(a-d)-0+at^3|)/sqrt(1+t^2)`
subtracting`P_2^2` from`P_1^2`
`=(a+d+at^2)^2/(1+t^2)-(a-d+at^2)^2/(1+t^2)`
`=(4ad+4adt^2)/(1+t^2)`
`=4ad`
`P_1^2-P_2^2=4ad`.


Discussion

No Comment Found

Related InterviewSolutions