1.

परिमेय संख्याओं `a` और `b` को ज्ञात कीजिएः `(sqrt(3)-1)/(sqrt(3)+1)+(sqrt(3)+1)/(sqrt(3)-1)=a+sqrt(3b)`

Answer» `(sqrt(3)-1)/(sqrt(3)+1)+(sqrt(3)-1)/(sqrt(3)+1)xx(sqrt(3)-1)/(sqrt(3)-1)=((sqrt(3)-1)^(2))/((sqrt(3))^(2)-1^(2))`
`=(3+1-2sqrt(3))/2=(4-2sqrt(3))/2=2-sqrt(3)`
`=(sqrt(3)+1)/(sqrt(3)-1)=(sqrt(3)+1)/(sqrt(3)-1)xx(sqrt(3)+1)/(sqrt(3)+1)=((sqrt(3)+1)^(2))/((sqrt(3))^(2)-(1)^(2))`
`=(3+1+2sqrt(3))/(3-1)+(4+2sqrt(3))/2=2+sqrt(3)`
`:. (sqrt(3)-1)/(sqrt(3)+1)+(sqrt(3)+1)/(sqrt(3)-1)=2-sqrt(3)+2+sqrt(3)=4`
`4+(0)sqrt(3)=a+sqrt(3)b`
`impliesa=4,b=0`


Discussion

No Comment Found