1.

Prove: `sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4`

Answer» Let `cot^-1 3 = theta`.
Then, `cot theta = 3`
`=>costheta/sintheta = 3 =>cos^2theta/sin^2theta = 9`
`=>(1-sin^2theta)/sin^2theta = 9 =>sintheta = 1/sqrt10`
`=> theta = sin^-1(1/sqrt10)`
`:. L.H.S. = sin^-1(1/sqrt5) +sin^-1(1/sqrt10)`
We know, `sin^-1x+sin^-1y = sin^-1(xsqrt(1-y^2)+ysqrt(1-x^2))`
So, our expression becomes,
`= sin^-1(1/sqrt5sqrt(1-1/10)+sqrt(1-1/5)1/sqrt10)`
`=sin^-1(3/sqrt50+2/sqrt50)`
`=sin^-1(5/(5sqrt2))`
`=sin^-1(1/sqrt2)`
`=pi/4 = R.H.S.`


Discussion

No Comment Found

Related InterviewSolutions