1.

Prove that (2√3 + 3) sin x + 2√3 cos x lies between – (2√3 + √15) and (2√3 + √15).

Answer»

Suppose f(x) = (2√3 + 3)sin x + 2√3 cos x

Here, A = 2√3, B = 2√3 + 3 and C = 0

– √[(2√3)2 + (2√3 + 3)2] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[(2√3)2 + (2√3 + 3)2]
– √[12 + 12 + 9 + 12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[12 + 12 + 9 + 12√3]

– √[33 + 12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[33 + 12√3]

– √[15 + 12 + 6 + 12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[15 + 12 + 6 + 12√3]

As we know that (12√3 + 6 < 12√5) because the value of √5 – √3 is more than 0.5

Therefore, if we replace, (12√3 + 6 with 12√5) the above inequality still holds.

Therefore by rearranging the above expression √(15+12+12√5)we get, 2√3 + √15

– 2√3 + √15 ≤ (2√3 + 3) sin x + 2√3 cos x ≤ 2√3 + √15

Thus proved.



Discussion

No Comment Found