InterviewSolution
Saved Bookmarks
| 1. |
Prove that `2^n >1+nsqrt(2^(n-1)),AAn >2`where `n`is a positive integer. |
|
Answer» `2^(n) gt 1 + n sqrt(2^(n - 1))` `implies (2^(n) - 1)/(2 - 1) gt n x 2^((n - 1)//2)` Now, `(2^(n) - 1)//(2 - 1)` is the sum of a G.P whose first term is 1 and common ratio is 2. We have to prove that `1 + 2 + 2^(2) + 2^(3) + …. + 2^(n - 1) ge n xx 2^((n - 1)//2)`. Now, Using A.M. `ge` G.M., we get `(1 + 2 + 2^(2) + ..... 2^(n - 1))/(n) ge (1 xx 2 xx 2^(2) xx 2^(3) ... 2^(n - 1))^(1//n)` Now, `R.H.S = (2^(1 + 2 + 3 +... ( n - 1)))^(1//n)` `= [2^((n - 1) n//2)]^(1//n) = 2^((n - 1)//2)` Hence, `1 + 2 + 2^(2) + .... + 2^(n - 1) gt n xx 2^((n - 1)//2)` |
|