InterviewSolution
Saved Bookmarks
| 1. |
Prove that ` ((2n)!)/(n!) =2^(n) xx{1xx3xx5xx...xx(2n-1)}. ` |
|
Answer» We have ` ((2n)!)/(n!) =({1xx2xx3xx4xx5xx...xx(2n-2)xx(2n-1)xx 2n})/(n!) ` `=({1xx3xx5xx...xx(2n-1)}xx{2xx4xx6xx...xx(2n-2)xx2n})/(n!) ` `=({1xx3xx5xx...xx(2n-1)}xx2^(n)xx{1xx2xx3xx...xxn})/(n!) ` ` =({1xx3xx5xx...xx(2n-1)}xx2^(n)xx (n!))/(n!) ` ` =2^(n)xx{1xx3xx5xx...xx(2n-1)}.` Hence, `((2n)!)/(n!)= 2^(n)xx{1xx3xx5xx...xx(2n-1)}. ` |
|