1.

Prove that `2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))`

Answer» Let `tan^(-1)1/x=theta`. Then, `1/x=tantheta rArr x=cottheta`.
`therefore` LHS `=2tan^(-1)1/x=2theta`.
RHS `=sin^(-1)(2cottheta)/(cot^(2)theta+1)=sin^(-1)(2tantheta)/(1+tan^(2)theta)`
`=sin^(-1)(sin 2theta)=2theta`
`therefore` LHS=RHS.
Hence, `2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))`.


Discussion

No Comment Found