InterviewSolution
Saved Bookmarks
| 1. |
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a). |
|
Answer» We have, L.H.S. = (a + b + c)3 – a3 -b3 – c3 = {(a + b + c)3 – (a)3} – (b3 + c3) = (a + b + c – a){(a + b + c)2 + a(a + b + c) + a2} – (b + c){b2 – bc + c2) [∵ x3 – y3 = (x – y)(x2 + xy + y2) and x3 + y3 = (x + y)(x2 – xy + y2)] = (b + c){a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab + ac + a2} – (b + c)(b2 – bc + c2) = (b + c)[3a2 + b2 + c2 + 3ab + 2bc + 3ca – b2 + bc – c2] = (b + c)[3a2 + 3ab + 3bc + 3ca] = 3(b + c)[a2 + ab + bc + ca] = 3(b + c)[a(a + b) + c(a + b)] = 3(b + c)(a + b)(a + c) = 3(a + b)(b + c)(c + a) = R.H.S. |
|