

InterviewSolution
Saved Bookmarks
1. |
Prove that for all valuesof `lambdaa n dmu`, the planes `(2x)/a+y/b+(2z)/c-1+lambda(x/a-(2y)/b-z/c-2)=0`and `(4x)/a+(3y)/b-5+mu((5y)/b-(4z)/c+3)=0`intersect on thesame line. |
Answer» Let the given planes intersect on the line with direction ratios l, m and n. In that case. `(2+lamda)(l)/(a)+(1-2lamda)(m)/(b)+(2-lamda)(n)/(c)=0" "(i)` and `(4l)/(a)-(3-5mu)(m)/(b)+4mu.(n)/(c)=0" "(ii)` Hence, `(l//a)/(6-6mu-3lamda-3lamdamu)=(m//b)/(8-8mu-4lamda=4lamdamu)` `=(n//c)/(-10+10mu+5lamda+5lamdamu)` or `(l//a)/(3(2-2mu-lamda-lamdamu))=(m//b)/(4(2-2mu=lamda-lamdamu))` `=(n//c)/((-5(2-2mu-lamda-lamdamu))` `(l//a)/(3)=(m//b)/4=(n//c)/(-5)" "("provided " 2-2mu-lamda-lamdamune0)` which are independent of `lamdaand mu`. Hence, a line with driection ratios (3a, 4b, -5c) lies in both the planes. For `2-2mu-lamda-lamdamu=0orlamda=(2(l-mu))/(1+mu)`, planes (i) and (ii) coincide with each other. Hence, the two given familise of planes intersect on the same line. |
|