InterviewSolution
| 1. |
Prove that:(i) (cos 11°+ sin 11°)/(cos 11° – sin 11°) = tan 56° (ii) (cos 9° + sin 9°)/(cos 9° – sin 9°) = tan 54°(iii) (cos 8° – sin 8°)/(cos 8° + sin 8°) = tan 37° |
|
Answer» (i) Let us consider the LHS: (cos 11° + sin 11°)/(cos 11° – sin 11°) Let us divide the numerator and denominator by cos 11° we get, (cos 11° + sin 11°)/(cos 11° – sin 11°) = (1 + tan 11°)/(1 – tan 11°) = (1 + tan 11°)/(1 - 1 × tan 11°) = (tan 45° + tan 11°)/(1 – tan 45° × tan 11°) As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, (tan 45° + tan 11°)/(1 – tan 45° × tan 11°) = tan (45° + 11°) = tan 56° = RHS ∴ LHS = RHS Thus proved. (ii) (cos 9° + sin 9°)/(cos 9° – sin 9°) = tan 54° Let us consider the LHS: (cos 9° + sin 9°)/(cos 9° – sin 9°) Let us divide the numerator and denominator by cos 9° we get, (cos 9° + sin 9°)/(cos 9° – sin 9°) = (1 + tan 9°)/(1 – tan 9°) = (1 + tan 9°)/(1 – 1 × tan 9°) = (tan 45° + tan 9°)/(1 – tan 45° × tan 9°) As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, (tan 45° + tan 9°)/(1 – tan 45° × tan 9°) = tan (45° + 9°) = tan 54° = RHS ∴ LHS = RHS Thus proved. (iii) Let us consider the LHS: (cos 8° – sin 8°)/(cos 8° + sin 8°) Let us divide the numerator and denominator by cos 8° we get, (cos 8° – sin 8°)/(cos 8° + sin 8°) = (1 – tan 8°)/(1 + tan 8°) = (1 – tan 8°)/(1 + 1 × tan 8°) = (tan 45° – tan 8°)/(1 + tan 45° × tan 8°) As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, (tan 45° – tan 8°)/(1 + tan 45° × tan 8°) = tan (45° – 8°) = tan 37° = RHS ∴ LHS = RHS Thus proved. |
|