1.

Prove that:(i) (cos 11°+ sin 11°)/(cos 11° – sin 11°) = tan 56°  (ii) (cos 9° + sin 9°)/(cos 9° – sin 9°) = tan 54°(iii) (cos 8° – sin 8°)/(cos 8° + sin 8°) = tan 37°

Answer»

(i) Let us consider the LHS:

(cos 11° + sin 11°)/(cos 11° – sin 11°)

Let us divide the numerator and denominator by cos 11° we get,

(cos 11° + sin 11°)/(cos 11° – sin 11°) = (1 + tan 11°)/(1 – tan 11°)

= (1 + tan 11°)/(1 - 1 × tan 11°)

= (tan 45° + tan 11°)/(1 – tan 45° × tan 11°)

As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B)

Therefore,

(tan 45° + tan 11°)/(1 – tan 45° × tan 11°) = tan (45° + 11°)

= tan 56°

= RHS

∴ LHS = RHS

Thus proved.

(ii) (cos 9° + sin 9°)/(cos 9° – sin 9°) = tan 54°

Let us consider the LHS:

(cos 9° + sin 9°)/(cos 9° – sin 9°)

Let us divide the numerator and denominator by cos 9° we get,

(cos 9° + sin 9°)/(cos 9° – sin 9°) = (1 + tan 9°)/(1 – tan 9°)

= (1 + tan 9°)/(1 – 1 × tan 9°)

= (tan 45° + tan 9°)/(1 – tan 45° × tan 9°)

As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B)

Therefore,

(tan 45° + tan 9°)/(1 – tan 45° × tan 9°) = tan (45° + 9°)

= tan 54°

= RHS

∴ LHS = RHS

Thus proved.

(iii) Let us consider the LHS:

(cos 8° – sin 8°)/(cos 8° + sin 8°)

Let us divide the numerator and denominator by cos 8° we get,

(cos 8° – sin 8°)/(cos 8° + sin 8°) = (1 – tan 8°)/(1 + tan 8°)

= (1 – tan 8°)/(1 + 1 × tan 8°)

= (tan 45° – tan 8°)/(1 + tan 45° × tan 8°)

As we know that tan (A + B) = (tan A + tan B)/(1 – tan A tan B)

Therefore,

(tan 45° – tan 8°)/(1 + tan 45° × tan 8°) = tan (45° – 8°)

= tan 37°

= RHS

∴ LHS = RHS

Thus proved.



Discussion

No Comment Found