InterviewSolution
Saved Bookmarks
| 1. |
Prove that:(i) sinθ cos(90°-θ)+sin(90°-θ) cosθ=1(ii) sinθcos(90°-θ)+cosθsin(90°-θ)=2(iii) sinθ cos(90°-θ)cosθsin(90°-θ)+cosθ sin(90°-θ)sinθcos(90°-θ)=1(iv) cos(90°-θ)sec(90°-θ)tanθcosec(90°-θ)sin(90°-θ)cot(90°-θ)+tan(90°-θ)cotθ=2(v) cos(90°-θ)1+sin(90°-θ)+1+sin(90°-θ)cos(90°-θ)=2cosecθ(vi) sec90°-θ cosecθ-tan90°-θ cotθ+cos225°+cos265°3tan27° tan63°=23 CBSE 2010(vii) cotθ tan90°-θ-sec90°-θcosecθ+3tan12° tan60° tan78°=2 CBSE 2010 |
|
Answer» Prove that: (i) (ii) (iii) (iv) (v) (vi) (vii) |
|