1.

Prove that:(i) sinθ cos(90°-θ)+sin(90°-θ) cosθ=1(ii) sinθcos(90°-θ)+cosθsin(90°-θ)=2(iii) sinθ cos(90°-θ)cosθsin(90°-θ)+cosθ sin(90°-θ)sinθcos(90°-θ)=1(iv) cos(90°-θ)sec(90°-θ)tanθcosec(90°-θ)sin(90°-θ)cot(90°-θ)+tan(90°-θ)cotθ=2(v) cos(90°-θ)1+sin(90°-θ)+1+sin(90°-θ)cos(90°-θ)=2cosecθ(vi) sec90°-θ cosecθ-tan90°-θ cotθ+cos225°+cos265°3tan27° tan63°=23 CBSE 2010(vii) cotθ tan90°-θ-sec90°-θcosecθ+3tan12° tan60° tan78°=2 CBSE 2010

Answer» Prove that:



(i) sinθ cos(90°-θ)+sin(90°-θ) cosθ=1

(ii) sinθcos(90°-θ)+cosθsin(90°-θ)=2

(iii) sinθ cos(90°-θ)cosθsin(90°-θ)+cosθ sin(90°-θ)sinθcos(90°-θ)=1

(iv) cos(90°-θ)sec(90°-θ)tanθcosec(90°-θ)sin(90°-θ)cot(90°-θ)+tan(90°-θ)cotθ=2

(v) cos(90°-θ)1+sin(90°-θ)+1+sin(90°-θ)cos(90°-θ)=2cosecθ

(vi) sec90°-θ cosecθ-tan90°-θ cotθ+cos225°+cos265°3tan27° tan63°=23 CBSE 2010

(vii) cotθ tan90°-θ-sec90°-θcosecθ+3tan12° tan60° tan78°=2 CBSE 2010


Discussion

No Comment Found