InterviewSolution
| 1. |
Prove that:(i) tan 225° cot 405° + tan 765° cot 675° = 0(ii) sin 8π/3 cos 23π/6 + cos 13π/3 sin 35π/6 = 1/2(iii) cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = 1/2(iv) tan (-125°) cot (-405°) – tan (-765°) cot (675°) = 0(v) cos 570° sin 510° + sin (-330°) cos (-390°) = 0(vi) tan 11π/3 – 2 sin 4π/6 – 3/4 cosec2 π/4 + 4 cos2 17π/6 = (3 – 4√3)/2(vii) 3 sin π/6 sec π/3 – 4 sin 5π/6 cot π/4 = 1 |
|
Answer» (i) Let us consider the LHS: tan 225° cot 405° + tan 765° cot 675° tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°) As we know that when n is odd, cot → tan. tan 45° cot 45° + tan 45° [-tan 45°] tan 45° cot 45° – tan 45° tan 45° 1 × 1 – 1 × 1 1 – 1 0 = RHS ∴ LHS = RHS Thus proved. (ii) sin 8π/3 cos 23π/6 + cos 13π/3 sin 35π/6 = 1/2 Let us consider the LHS: sin 8π/3 cos 23π/6 + cos 13π/3 sin 35π/6 sin 480° cos 690° + cos 780° sin 1050° sin (90° × 5 + 30°) cos (90° × 7 + 60°) + cos (90° × 8 + 60°) sin (90° × 11 + 60°) As we know that when n is odd, sin → cos and cos → sin. cos 30° sin 60° + cos 60° [-cos 60°] √3/2 × √3/2 – 1/2 × 1/2 3/4 – 1/4 2/4 1/2 = RHS ∴ LHS = RHS Thus proved. (iii) Let us consider the LHS: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° cos 24° + cos (90° × 1 – 35°) + cos (90° × 1 + 35°) + cos (90° × 2 + 24°) + cos (90° × 3 + 30°) As we know that when n is odd, cos → sin. cos 24° + sin 35° – sin 35° – cos 24° + sin 30° 0 + 0 + 1/2 1/2 = RHS ∴ LHS = RHS Thus proved. (iv) Let us consider the LHS: tan (-125°) cot (-405°) – tan (-765°) cot (675°) As we know that tan (-x) = -tan (x) and cot (-x) = -cot (x). [-tan (225°)] [-cot (405°)] – [-tan (765°)] cot (675°) tan (225°) cot (405°) + tan (765°) cot (675°) tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°) tan 45° cot 45° + tan 45° [-tan 45°] 1 × 1 + 1 × (-1) 1 – 1 0 = RHS ∴ LHS = RHS Thus proved. (v) Let us consider the LHS: cos 570° sin 510° + sin (-330°) cos (-390°) As we know that sin (-x) = -sin (x) and cos (-x) = +cos (x). cos 570° sin 510° + [-sin (330°)] cos (390°) cos 570° sin 510° – sin (330°) cos (390°) cos (90° × 6 + 30°) sin (90° × 5 + 60°) – sin (90° × 3 + 60°) cos (90° × 4 + 30°) As we know that cos is negative at 90° + θ i.e. in Q2 and when n is odd, sin → cos and cos → sin. -cos 30° cos 60° – [-cos 60°] cos 30° -cos 30° cos 60° + cos 60° cos 30° 0 = RHS ∴ LHS = RHS Thus proved. (vi) tan 11π/3 – 2 sin 4π/6 – 3/4 cosec2 π/4 + 4 cos2 17π/6 = (3 – 4√3)/2 Let us consider the LHS: tan 11π/3 – 2 sin 4π/6 – 3/4 cosec2 π/4 + 4 cos2 17π/6 tan (11 × 180°)/3 – 2 sin (4 × 180°)/6 – 3/4 cosec2 180°/4 + 4 cos2 (17 × 180°)/6 tan 660° – 2 sin 120° – 3/4 (cosec 45°)2 + 4 (cos 510°)2 tan (90° × 7 + 30°) – 2 sin (90° × 1 + 30°) – 3/4 [cosec 45°]2 + 4 [cos (90° × 5 + 60°)]2 As we know that tan and cos is negative at 90° + θ i.e. in Q2 and when n is odd, tan → cot, sin → cos and cos → sin. [-cot 30°] – 2 cos 30° – 3/4 [cosec 45°]2 + [-sin 60°]2 – cot 30° – 2 cos 30° – 3/4 [cosec 45°]2 + [sin 60°]2 -√3 – 2√3/2 – 3/4 (√2)2 + 4 (√3/2)2 -√3 – √3 – 6/4 + 12/4 (3 – 4√3)/2 = RHS ∴ LHS = RHS Thus proved. (vii) 3 sin π/6 sec π/3 – 4 sin 5π/6 cot π/4 = 1 Let us consider the LHS: 3 sin π/6 sec π/3 – 4 sin 5π/6 cot π/4 3 sin 180°/6 sec 180°/3 – 4 sin 5(180°)/6 cot 180°/4 3 sin 30° sec 60° – 4 sin 150° cot 45° 3 sin 30° sec 60° – 4 sin (90° × 1 + 60°) cot 45° As we know that when n is odd, sin → cos. 3 sin 30° sec 60° – 4 cos 60° cot 45° 3 (1/2) (2) – 4 (1/2) (1) 3 – 2 1 = RHS ∴ LHS = RHS |
|