InterviewSolution
| 1. |
Prove that:(i) tan 8x – tan 6x – tan 2x = tan 8x tan 6x tan 2x(ii) tan π/12 + tan π/6 + tan π/12 tan π/6 = 1(iii) tan 36° + tan 9° + tan 36° tan 9° = 1(iv) tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x |
|
Answer» (i) Let us consider the LHS tan 8x – tan 6x – tan 2x tan 8x = tan(6x + 2x) As we know that, tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, tan 8x = (tan 6x + tan 2x)/(1 – tan 6x tan 2x) On cross-multiplying we get, tan 8x(1 – tan 6x tan 2x) = tan 6x + tan 2x tan 8x – tan 8x tan 6x tan2x = tan 6x + tan 2x Now, upon rearranging we get, tan 8x – tan 6x – tan 2x = tan 8x tan 6x tan 2x = RHS ∴ LHS = RHS Thus proved. (ii) As we know, π/12 = 15° and π/6 = 30° Therefore, we have 15° + 30° = 45° tan(15° + 30°) = tan 45° As we know that, tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, (tan 15° + tan 30°)/(1 – tan 15° tan 30°) = 1 tan 15° + tan 30° = 1 – tan 15° tan 30° Now, upon rearranging we get, tan15° + tan30° + tan15° tan30° = 1 Thus proved. (iii) As we know 36° + 9° = 45° Therefore we have, tan (36° + 9°) = tan 45° As we know that, tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, (tan 36° + tan 9°)/(1 – tan 36° tan 9°) = 1 tan 36° + tan 9° = 1 – tan 36° tan 9° Now, upon rearranging we get, tan 36° + tan 9° + tan 36° tan 9° = 1 Thus proved. (iv) Let us consider the LHS tan 13x – tan 9x – tan 4x tan 13x = tan (9x + 4x) As we know that, tan (A + B) = (tan A + tan B)/(1 – tan A tan B) Therefore, tan 13x = (tan 9x + tan 4x)/(1 – tan 9x tan 4x) On cross-multiplying we get, tan 13x (1 – tan 9x tan 4x) = tan 9x + tan 4x tan 13x – tan 13x tan 9x tan 4x = tan 9x + tan 4x Now, upon rearranging we get, tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x = RHS ∴ LHS = RHS Thus proved. |
|