1.

Prove that:n( AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(A∩B) - n(B∩C) + n(A∩B∩C).

Answer»

\(n((A \cup B) \cup C) = n(A\cup B) + n(C) - n((A \cup B)\cap C)\)

\((\because n (A \cup B) = n(A + n(B) - n(A \cap B))\)

\(= n(A) + n(B) - n(A \cap B) + n(C) - n((A \cap C) \cup(B \cap C))\)

\(= n(A) + n(B) + n(C) - n(A \cap B) - (n(A\cup C) + n(B \cap C) - n(A \cap C) \cap (B \cap C))\)

\(= n(A) + n(B) + n(C) - n(A \cap B) - n(A\cap C) - n(B \cap C) + n(A \cap B\cap C) \)

Hence Proved.



Discussion

No Comment Found

Related InterviewSolutions