InterviewSolution
Saved Bookmarks
| 1. |
Prove that (r+1)xx.^(n)C_(0)-rxx.^(n)C_(1)+(r-1)xx.^(n)C_(2)-(r-2).^(n)C_(3) + "...."+(-1)^(r)xx.^(n)C_(r)+"...."=(-1)^(r)xx.^(n-2)C_(r). |
|
Answer» SOLUTION :`(R+1)XX.^(n)C_(0)-rxx.^(n)C_(1)+(r-1)xx.^(n)C_(2)-(r-2).^(n)C_(3)+"……"+(-1)^(r )xx .^(n)C_(r ) + "….."` `=` Coefficient of `X^(r )` in `(.^(n)C_(0)--.^(n)C_(1)x+.^(n)C_(2)x^(2)-.^(n)C_(3)x^(3)+"…….."(-1)^(r)xx.^(n)C_(r )+"….") xx(1+2x+3x^(2)+4x^(3)+"....."(r+1)x^(r)+".....")` `=` Coefficient of `x^(r)` in `(1-x)^(n)(1-x)^(2)` = COEFFICIENTOF `x^(r)` in `(1-x)^(n-2)` `= (-1)^(r)xx.^(n-2)C_(r )` |
|