InterviewSolution
Saved Bookmarks
| 1. |
Prove that: `s in" "x" "+" "s in" "3x" "+" "s in" "5x" "+" "s in" "7x" "=" "4" "cos" "x" "cos" "2x" "s in" "4x` |
|
Answer» LHS `=sinx+sin3x+sin5x+sin7x = (sin7x+sin5x)+(sin5x+sin3x)` `=2sin(7x+x)/(2)cos(7x-x)/(2) + 2sin(5x+3x)/(2)cos(5x-3x)/(2)` `=2sin4xcos3x+2sin4xcosx` `=2sin4x(cos3x+cosx)` `=2sin4x[2cos(3x+x)(2)cos(3x-x)/(2)]` `=2sin4x[2cos2xcosx]` `=4cosxcos2xsin4x`= RHS Hence Proved. |
|