1.

Prove that: sin 5x = 5 sin x – 20 sin3 x + 16 sin5 x

Answer»

Let us consider the LHS

sin 5x

Then,

sin 5x = sin(3x + 2x)

But as we know,

Sin(x + y) = sin x cos y + cos x sin y…..(i)

Therefore,
sin 5x = sin 3x cos 2x + cos 3x sin 2x

= sin(2x + x) cos 2x + cos (2x + x) sin 2x……..(ii)

And

cos(x + y) = cos x cos y – sin x sin y……(iii)

Then, substituting equation (i) and (iii) in equation (ii), we get

sin 5x = (sin 2x cos x + cos 2x sin x) cos 2x + (cos 2x cos x – sin 2x sin x) sin 2x

= sin 2x cos 2x cos x + cos2 2x sin x + (sin 2x cos 2x cos x – sin2 2x sin x)

= 2sin 2x cos 2x cos x + cos2 2x sin x – sin2 2x sin x …….(iv)

Then sin 2x = 2sin x cos x………(v)

And cos 2x = cos2x – sin2x………(vi)

By substituting equation (v) and (vi) in equation (iv), we get

sin 5x = 2(2sin x cos x) (cos2x – sin2x) cos x + (cos2x – sin2x)sin x – (2sin x cos x)sin x

= 4(sin x cos2 x) ([1 – sin2x] – sin2x) + ([1 – sin2x] – sin2x)sin x – (4sin2 x cos2 x)sin x

(as cos2x + sin2x = 1 ⇒ cos2x = 1 – sin2x)

sin 5x = 4(sin x [1 – sin2x]) (1 – 2sin2x) + (1 – 2sin2x)sin x – 4sin3 x [1 – sin2x]

= 4sin x (1 – sin2x) (1 – 2sinx) + (1 – 4sin2x + 4sin4x) sin x – 4sin3 x + 4sin5x

= (4sin x – 4sin3x) (1 – 2sin2x) + sin x – 4sin3x + 4sin5x – 4sin3 x + 4sin5x

= 4sin x – 8sin3x – 4sin3x + 8sin5x + sin x – 8sin3x + 8sin5x

= 5sin x – 20sin3x + 16sin5x

= RHS

Thus proved.



Discussion

No Comment Found