1.

Prove that: `sin(A+2B)sinA-sinBsin(2A+B)sinB=sin(A+B)sin(A-B)`

Answer» LHS. `=sin(A+2B)sinA-sin(2A+B)sinB`
`=1/2[{cos(A+2B-A)-cos(A+2B+A)}-{cos(2A+B-B)-cos(2A+B+B)}]`
`=1/2[cos2B-cos(2A+2B)-cos2A+cos(2A+2B)]`
`=1/2(cos2B-cos2A)`
and RHS. `=sin(A+B)sin(A-B)`
`=1/2.2sin(A+B)sin(A-B)`
`=1/2[cos{(A+B)-(A-B)}-cos{(A+B)+(A-B)}]`
`1/2(cos2B-cos2A)`
`therefore` L.H.S=R.H.S Hence Proved.


Discussion

No Comment Found