InterviewSolution
Saved Bookmarks
| 1. |
Prove that: `sin5A=5sinA-20sin^(3)A+16sin^(5)A` |
|
Answer» LHS `=sin5A=sin(3A+2A)` `=(3sinA-4sin^(3)A)(1-2sin^(2)A)+(4cos^(3)A-3cosA)2sinAcosA` `=(3sinA-4sin^(3)A)(1-2sin^(2)A)+(4cos^(2)A-3)2sinAcos^(2)A` `=(3sinA-4sin^(3)A)(1-2sin^(2)A)+[4(1-sin^(2)A)-3]2sina(1-sin^(2)A` `=(3sinA-4sin^(3)A)(1-2sin^(2)A)+(2sinA-2sin^(3)A)(1-4sin^(2)A)` `=3sinA-6sin^(3)A-4sin^(3)A+8sin^(5)A +2sinA-8sin^(3)A-2sin^(3)A+8sin^(5)A` `5sinA-20sin^(3)A+16sin^(5)A` = RHS Hence Proved. |
|