InterviewSolution
Saved Bookmarks
| 1. |
Prove that: `sin6^(@)sin42^(@)sin66^(@)sin78^(@)=1/16` |
|
Answer» LHS `=sin6^(@)sin42^(@)sin66^(@)sin78^(@)` `=1/4(2sin66^(@)sin6^(@)).(2sin78^(@)sin42^(@))` `=1/4[cos(66^(@)-6^(@))-cos(66^(@)+6^(@))] [cos(78^(@)-42^(@))-cos(78^(@)+42^(@))]` `=1/4[cos60^(@)-cos72^(@)][cos36^(@)-cos120^(@)]` `=1/4[1/2-cos(90^(@)-18^(@))][cos36^(@)-cos(90^(@)+30^(@))]` `=1/4[1/2-sin18^(@)][cos36^(@)+sin30^(@)]` `=1/4[1/2-(sqrt(5)-1)/(4)][(sqrt(5)+1)/(4)+1/2]` `=1/4[(2-sqrt(5)+1)/(4)][(sqrt(5)+1+2)/(4)]` `=3-sqrt(5)(3+sqrt(5))/(64)=(9-5)/(64)` `=4/64=1/16`= RHS Hence Proved. |
|