

InterviewSolution
Saved Bookmarks
1. |
Prove that tan(45+x)=sec2x+tan2x |
Answer» LHS = Tan(45° + x )=(Tan45° +Tan45°)/(1-Tanx.Tan45°)=(Tanx + 1)/( 1- Tanx )=( Sinx/cosx + 1)./( 1- sinx/cosx)=(sinx + cosx )/(cosx - sinx)=(sinx +cosx )(cosx - sinx)/(cosx -sinx)²=(sin²x -cos²x)/(1-sin2x)=cos2x/(sin2x -1)=1/(sin2x - 1)/cos2x=1/(tan2x - sec2x )=(tan2x + sec2x )= RHS Put the formulaa |
|