1.

Prove that the determinant |(x,sin θ,cos θ),(-sin θ,-x,1),(cos θ,1,2)| is independent of θ.

Answer»

Expending along the first row, we get

Δ = x(-x2 - 1) - sin θ(-x sin θ - cos θ) + cos θ(-sin θ + x cos θ)

= - x3 + x + x sin2 θ + sin θ.cos θ - sin θ.cos θ + x cos2 θ 

= x3 + x + x(sin2 θ + cos2 θ) = - x3 + 2x

Hence, given determinant is independent of θ.



Discussion

No Comment Found