

InterviewSolution
Saved Bookmarks
1. |
Prove that the equation x2(a2 + b2) + 2x(ac + bd) + (c2 + d2)= 0 has no real root, if ad ≠ bc. |
Answer» x2(a2 + b2) + 2x(ac + bd) + (c2 + d2)= 0 d = b2 – 4ac d = (2ac + 2bd)2 – 4 (a2 + b2) (c2 + d2) d = 4a2c2 + 4b2d2 + 8abcd – 4 [a2 (c2 + d2) + b2 (c2+d2)] d = 4a2c2 + 4b2d2 + 8abcd – 4 [a2c2 + a2d2 + b2c2 + b2d2] d = 4a2c2 + 4b2d2 + 8abcd – 4a2c2 – 4a2d2 – 4b2c2 – 4b2 d2 d = 8abcd – 4a2d2 – 4b2c2 d = 8abcd – 4(a2d2 + b2 c2) d = –4 (a2 d2 + b2c2 – 2abcd) d = –4 [(ad + bc)2] For ad ≠ bc d= –4 × [value of (ad + bc)2] ∴ d is always negative So, d < 0 The given equation has no real roots. |
|