1.

Prove that the product of 2n consecutive negative integers is divisible by (2n)!

Answer»

Let us assume the negative consecutive integers are –1, – 2,......, – (2n) 

Let M be the product of the negative integers, 

⇒ M = ( – 1).( – 2)( – 3)......( – 2n + 1).( – 2n) 

⇒ M = ( – 1)2n(1.2.3.......(2n – 1).(2n)) 

⇒ M = 1.2.3......……(2n – 1).(2n) 

We know that, 

n! = n(n – 1)(n – 2)…………2.1 

⇒ M = (2n)!

⇒ \(\frac{M}{(2n)!}\) = \(\frac{(2n)!}{(2n)!}\) 

⇒ \(\frac{M}{(2n)!}\) = 1

∴ M is divisible by (2n)!.



Discussion

No Comment Found