1.

Prove that the square of any positive integer is of the form 5q or 5q + 1, 5q + 4 for some integer q.

Answer»

Let ‘a’ be any positive integer. 

Then,

According to Euclid’s division lemma, 

a = bq+r 

According to the question, when b = 5. 

a = 5k + r, 0 < r < 5 

When r = 0, we get, a = 5k 

a2 = 25k2 = 5(5k2) = 5q, where q = 5k2 

When r = 1, we get, a = 5k + 1 

a2 = (5k + 1)2 

= 25k2 + 1 + 10k 

= 5k(5k + 2) + 1 

= 5q + 1, where q = k(5k + 2) 

When r = 2, we get, a = 5k + 2 

a2 = (5k + 2)2 

= 25k2 + 4 + 20k 

= 5(5k2 + 4k) + 4 

= 4q + 4, where q = 5k2 + 4k 

When r = 3, we get, a = 5k + 3 

a2 = (5k + 3)

= 25k2 + 9 + 30k 

= 5(5k2 + 6k + 1) + 4 

= 5q + 4, where q = 5k2 + 6k + 1 

When r = 4, we get, a = 5k + 4 

a2 = (5k + 4)2 

= 25k2 + 16 + 40k 

= 5(5k2 + 8k + 3) + 1 

= 5q + 1, where q = 5k2 + 8k + 3 

Therefore, the square of any positive integer is of the form 5q or, 5q + 1 or 5q + 4 for some integer q.



Discussion

No Comment Found