1.

Prove that the square of any positive integer is of the form 3m or 3m + 1 but not of the form 3m + 2.

Answer»

Let any positive integer ‘n’ be of the form 3q or, 3q+1 or 3q+2. (From Euclid’s division lemma for b= 3) 

If n= 3q, 

Then, on squaring 

⇒ n2= (3q)2 = 9q2 

⇒ n2= 3(3q2

⇒ n2= 3m, where m is some integer [m = 3q2] 

If n= 3q+1, 

Then, on squaring 

⇒ n2= (3q+1)2 = 9q2 + 6q + 1 

⇒ n2= 3(3q2 +2q) + 1 

⇒ n2= 3m + 1, where m is some integer [m = 3q2 +2q] 

If n= 3q+2, 

Then, on squaring 

⇒ n2= (3q+2)2 = 9q2 + 12q + 4 

⇒ n2= 3(3q2 + 4q + 1) + 1 

⇒ n2= 3m, where m is some integer [m = 3q2 + 4q + 1] 

Thus, it is observed that the square of any positive integer is of the form 3m or 3m + 1 but not of the form 3m + 2.



Discussion

No Comment Found