Saved Bookmarks
| 1. |
Prove the following trigonometric identities:\(\frac{tan^2A}{1+tan^2A}+\frac{cot^2A}{1+cot^2A}=1\) |
|
Answer» \(\frac{tan^2A}{1+tan^2A}+\frac{cot^2A}{1+cot^2A}=\) \(\frac{tan^2A}{sec^2A}+\frac{cot^2A}{cosec^2A}\) = \(\frac{sin^2A}{\frac{cos^2A}{\frac{1}{cos^2A}}}+\frac{cos^2A}{\frac{sin^2A}{\frac{1}{sin^2A}}}\) = sin2A + cos2A =1 Hence Proved. |
|