1.

Prove the following trigonometric identities:\(\frac{tan^2A}{1+tan^2A}+\frac{cot^2A}{1+cot^2A}=1\)

Answer»

\(\frac{tan^2A}{1+tan^2A}+\frac{cot^2A}{1+cot^2A}=\) \(\frac{tan^2A}{sec^2A}+\frac{cot^2A}{cosec^2A}\) 

\(\frac{sin^2A}{\frac{cos^2A}{\frac{1}{cos^2A}}}+\frac{cos^2A}{\frac{sin^2A}{\frac{1}{sin^2A}}}\) 

= sin2A + cos2A

=1

Hence Proved.



Discussion

No Comment Found

Related InterviewSolutions