InterviewSolution
| 1. |
Prove the identity: 3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4 (sin6 x + cos6 x) = 13 |
|
Answer» Let us consider the LHS 3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4 (sin6 x + cos6 x) As we know, (a + b)2 = a2 + b2 + 2ab (a – b)2 = a2 + b2 – 2ab a3 + b3 = (a + b) (a2 + b2 – ab) Therefore, 3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x) = 3{(sin x – cos x) 2}2 + 6 {(sin x)2 + (cos x)2 + 2 sin x cos x)} + 4{(sin2 x)3 + (cos2 x)3} = 3{(sin x)2 + (cos x)2 – 2 sin x cos x)}2 + 6(sin2 x + cos2 x + 2 sin x cos x) + 4{(sin2 x + cos2 x) (sin4 x + cos4 x – sin2 x cos2 x)} = 3(1 – 2 sin x cos x)2 + 6 (1 + 2 sin x cos x) + 4{(1) (sin4 x + cos4 x – sin2 x cos2 x)} As we know, sin2 x + cos2 x = 1 Therefore, = 3{12 + (2 sin x cos x)2 – 4 sin x cos x} + 6(1 + 2 sin x cos x) + 4{(sin2 x)2 + (cos2 x)2 + 2 sin2 x cos2 x – 3 sin2 x cos2 x)} = 3{1 + 4 sin2 x cos2 x – 4 sin x cos x} + 6(1 + 2 sin x cos x) + 4{(sin2 x + cos2 x) 2 – 3 sin2 x cos2 x)} = 3 + 12 sin2 x cos2 x – 12 sin x cos x + 6 + 12 sin x cos x + 4{(1)2 – 3 sin2 x cos2 x)} = 9 + 12 sin2 x cos2 x + 4(1 – 3 sin2 x cos2 x) = 9 + 12 sin2 x cos2 x + 4 – 12 sin2 x cos2 x = 13 = RHS Thus proved. |
|