InterviewSolution
Saved Bookmarks
| 1. |
Prove the identity: (cos α + cos β)2 + (sin α + sin β)2 = 4 cos2(α – β)/2 |
|
Answer» Let us consider the LHS (cos α + cos β)2 + (sin α + sin β)2 Now, upon expansion, we get, (cos α + cos β)2 + (sin α + sin β)2 = cos2 α + cos2 β + 2 cos α cos β + sin2 α + sin2 β + 2 sin α sin β = 2 + 2 cos α cos β + 2 sin α sin β = 2 (1 + cos α cos β + sin α sin β) = 2 (1 + cos (α – β)) [since, cos (A – B) = cos A cos B + sin A sin B] = 2 (1 + 2 cos2 (α – β)/2 – 1) [since, cos2x = 2cos2 x – 1] = 2 (2 cos2 (α – β)/2) = 4 cos2 (α – β)/2 = RHS Thus proved. |
|