1.

Proveimpulse momentum equation

Answer»

Solution :If aforce `(F )` actson a bodyin a veryshortintervalof time `(Detla t)`then formNewton'ssecondlaw inmagnitudeforms
Intergratingover timeforman intialtime`t_(i)` toa finaltime `t_(f)` we get
overset(i)UNDERSET(f ) (int) dp=overset(i)underset(f ) (int) Fdtg`
`P_(i)- P_(i)= underset(t) overset(t)(int)F dt`
`p_(1)=`initialmomentum of the bodyat time `t_(i)`
`p_(f)=` finalmomentum of the bodyat time `f_(f)`
`p_(f)- p_(i) = Delta p`changein MOMENTUM of thebodyduringthe TIMEINTERVAL
Theintegral`underset(t ) overset( t ) (int)F dt = J` iscalledthe impulseand itis equalto change a in momentum of the body .
If theforce is constantover the timeintervalthen
`underset(t ) overset(t ) (int ) Fdt= Funderset( t) overset( t) dt = F (t_(1) - t_(1)) = F Delta t`
`F Delta t= Delta p`
Impulse = Changein momentum


Discussion

No Comment Found