InterviewSolution
| 1. |
Rationales the denominator and simplify:(i) \(\frac{{\sqrt3 - \sqrt2}}{\sqrt3 + \sqrt2}\)(ii) \(\frac{5+2\sqrt3}{7+4\sqrt3}\)(iii) \(\frac{1+\sqrt2}{3-2\sqrt2}\)(iv) \(\frac{2\sqrt6-\sqrt5}{3\sqrt5-2\sqrt6}\)(v) \(\frac{4\sqrt3+5\sqrt2}{\sqrt{48}+\sqrt{18}}\)(vi) \(\frac{2\sqrt3-\sqrt5}{2\sqrt2+3\sqrt3}\) |
|
Answer» (i) Multiply by √3 - √2 both numerator and denominator. \(\frac{\sqrt3-\sqrt2}{\sqrt3+\sqrt2}\) \(= {(\sqrt3-\sqrt2)(\sqrt3-\sqrt2)\over (\sqrt3+\sqrt2)(\sqrt3-\sqrt2)}\) \(= {(\sqrt3-\sqrt2)^2\over3-2}\) \(=\frac {3-2\sqrt3\sqrt2+2}{1}\) \(= 5-2\sqrt6\) (ii) Multiply by 7 - 4√3 both numerator and denominator. \(\frac{5+2\sqrt3}{7+4\sqrt3}\) \(= \frac{(5+2\sqrt3)(7-4\sqrt3)} {(7+4\sqrt3)(7-4\sqrt3)}\) \(= \frac{(5+2\sqrt3)(7-4\sqrt3)} {49-48}\) \(= 36-20\sqrt3 + 14\sqrt3 - 24\) \(= 11-6\sqrt3\) (iii) Multiply by 3+2√2 both numerator and denominator. \(\frac{1+\sqrt2}{3-2\sqrt2}\) \(= \frac{(1+\sqrt2)(3+2\sqrt2)}{(3-2\sqrt2)(3+2\sqrt2)}\) \(= \frac{(1+\sqrt2)(3+2\sqrt2)}{9-8}\) \(= 3 +2\sqrt2 + 3\sqrt2 + 4\) \(= 7 + 5\sqrt2\) (iv) Multiply by 3√5 + 2√6 both numerator and denominator. \(\frac{2\sqrt6-\sqrt5}{3\sqrt5-2\sqrt6}\) \(= \frac{(2\sqrt6 - \sqrt5)(3\sqrt5+2\sqrt6)}{(3\sqrt5-2\sqrt6)(3\sqrt5+2\sqrt6)}\) \(= \frac{(2\sqrt6 - \sqrt5)(3\sqrt5+2\sqrt6)}{45-24}\) \(= \frac{(2\sqrt6 - \sqrt5)(3\sqrt5+2\sqrt6)}{21}\) \(= \frac{6\sqrt{30}+24-15-2\sqrt{30}}{21}\) \(= \frac{4\sqrt{30}+9}{21}\) (v) Multiply by √48 - √18 both numerator and denominator. \(\frac{4\sqrt3+5\sqrt2}{\sqrt{48}+\sqrt{18}}\) \(= \frac{(4\sqrt3+5\sqrt2)(\sqrt{48}-\sqrt{18})}{(\sqrt{48}+\sqrt{18})(\sqrt{48}-\sqrt{18})}\) \(= \frac{(4\sqrt3+5\sqrt2)(\sqrt{48}-\sqrt{18})}{48-18}\) \(= \frac{48-12\sqrt6+20\sqrt6-30}{30}\) \(=\frac{18+8\sqrt6}{30}\) \(=\frac{9+4\sqrt6}{15}\) (vi) Multiply by 2√2 - 3√3 both numerator and denominator. \(\frac{2\sqrt3-\sqrt5}{2\sqrt2+3\sqrt3}\) \(= \frac{(2\sqrt3-\sqrt5)(2\sqrt2-3\sqrt3)}{(2\sqrt2+3\sqrt3)(2\sqrt2-3\sqrt3)}\) \(= \frac{(2\sqrt3-\sqrt5)(2\sqrt2-3\sqrt3)}{8-27}\) \(=\frac{(4\sqrt6-2\sqrt10)-(18+3\sqrt15)}{-19}\) \(= \frac{(18-4\sqrt6+2\sqrt10-3\sqrt15)}{19}\) |
|