1.

Reduce the equation `sqrt3+y+2=0` to the normal form `x cos alpha+y sin alpha=p`, and hence find the value of `alpha and p`.

Answer» We have
`sqrt3x+y+2=0 Rightarrow -sqrt3x-y=2 " "["keeping constant +ve"]`
`Rightarrow ((-sqrt3)/(2))x+((-1)/(2))y=1 ` `["on dividing throughout by"sqrt((sqrt3)^(2)+1^(2))]`
`Rightarrow x cos alpha+y sin alpha=p,"where "cos alpha=(-1)/(2), sin alpha=(-sqrt3)/(2) and p=(5)/(2)`
Since, `cos alpha lt 0 and sin alpha lt 0, alpha lies in third quadrant.
Now, `tan alpha=(sin alpha)/(cos alpha)=((-sqrt3)/(2))xx(-2)=sqrt3=tan(180^(@)+60^(@))=tan 240^(@)`

Thus, ``alpha=240^(@) and p=(5)/(2)`
Hence, the given equation in normal form is
`x cos 240^(@)+y sin 240^(@)=(5)/(2)`


Discussion

No Comment Found

Related InterviewSolutions