1.

Resolve `(16)/((x-2)(x+2)^(2))` into partial fractions.

Answer» `Let (16)/((x-2)(x+2)^(2))=(A)/(x-2)+(B)/(x+2)+( C)/((x+2)^(2))`
`or (16)/((x-2)(x+2)^(2))=(A(x+2)^(2)+B(x-2)(x+2)+C(x-2))/((x-2)(x+2)^(2))`
`therefore 16-= A(x+2)^(2)+b(x-2)(x+2)+C(x-2) . . . .(i)`
`or 16-=(A+B)x^(2)+(4A+C)x+(4A-4B-2C).. . . .(ii)`
Putting `(x-2)=0 or x=2` in (i), we get `A=1.`
Putting `(x+2)=0 or x=-2` in (i), we get `C=-4.`
Comparing the coefficients of `x^(2)` on both sides of (ii) , we get
`A+B=0 or B=-A=-1`
Thus `A=1,B=-1 and C=-4.`
`therefore (16)/((x-2)(x+2)^(2))=[(1)/((x-2))-(1)/((x+2))-(4)/((x+2)^(2))].`


Discussion

No Comment Found