1.

Resolve `(x^(3)-2x^(2)-13x-12)/(x^(2)-3x-10)` into partial fractions.

Answer» On dividing we get
`(x^(3)-2x^(2)-13x-12)/(x^(2)-3x-10)=(x+1)-(2)/((x^(2)-3x-10))`
`Let (2)/((x^(2)-3x-10))=(2)/((x-5)(x+2))=(A)/(x-5)+(B)/(x+2)`
then`, (2)/((x-5)(x+2))+(A(x+2)+B(x-5))/((x-5)(x+2))`
or `2-= A(x+2)+B(x-5).`
putting `(x-5)=0 or x=5 `in (ii) , we get `A=(2//7)`
Putting `(x+2)=0 or x=-2`in (ii) , we get `B=(-2//7)`
`therefore (2)/((x^(2)-3x-10))=(2)/(7(x-5))-(2)/(7(x+2)).`
`"hence", (x^(3)-2x^(2)-13x-12)/(x^(2)-3x-10)=(x+1)-(2)/(7(x-5))+(2)/(7(x+2)).`


Discussion

No Comment Found